

November 2005

First Assessment

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 60

- All Questions may be attempted
- Each Question is worth 15 marks, and should be handed up in a separate examination Booklet.

Examiner - A.M.Gainford

Question 1. (15 Marks) (Start a new booklet.)

Marks

2

- (a) The point P(6, 9) divides the interval *AB* externally in the ratio 3:2. **2** Find the coordinates of the point *B* given that *A* is (1, 4).
- (b) The derivative function of a curve is given by $\frac{dy}{dx} = 2x 3$. If the curve passes through the point (-1, -3), find its equation.

(c) Find
$$\frac{dy}{dx}$$
 given: 6

(i)
$$y = \sqrt{3x^2 - 4}$$

(ii)
$$y = x^3(2-x)^4$$

(iii)
$$y = \frac{\left(x-1\right)^2}{2x+1}$$

- (d) Solve the inequalities
 - (i) $\frac{1}{x} > \frac{1}{5}$

(ii)
$$\frac{x}{x-1} \le 2$$

Question 2. (15 Marks) (Start a new booklet.)

		Marks
Find a	general solution of the equation $\sin\theta\cos\theta = \frac{1}{2}$.	2
Given	the polynomial $P(x) = x^3 + 2x^2 - 11x - 12$:	4
(i)	Use the factor theorem to determine the zeroes of the polynomial.	
(ii)	Express $P(x)$ as a product of linear factors.	
Prove	the identity	2
	$\frac{\sin\theta}{1-\cos\theta} + \frac{1-\cos\theta}{\sin\theta} = 2\csc\theta$	
	Find a Given (i) (ii) Prove	Find a general solution of the equation $\sin \theta \cos \theta = \frac{1}{2}.$ Given the polynomial $P(x) = x^3 + 2x^2 - 11x - 12:$ (i) Use the factor theorem to determine the zeroes of the polynomial. (ii) Express $P(x)$ as a product of linear factors. Prove the identity $\frac{\sin \theta}{1 - \cos \theta} + \frac{1 - \cos \theta}{\sin \theta} = 2 \operatorname{cosec} \theta$

- (d) Find the acute angle between the lines x-2y+1=0 and 3x+4y-3=0, correct to **3** the nearest minute.
- (e) Fred wishes to purchase an annuity which will pay him \$28 000 at the end of each 4 year, for a period of 20 years. The ruling interest rate is $9\frac{1}{2}$ % per annum compound. How much will Fred have to pay for the annuity?

Question 3. (15 Marks) (Start a new booklet.)

Marks

(a)	Solve progre	the equation $2x^3 + 3x^2 - 3x - 2 = 0$ given that the roots are in geometric ession.	4
(b)	From a point <i>A</i> on the ground the angle of elevation of the top (<i>T</i>) of a tower is 35° .		5
	(i)	Find the angle of elevation of the top of the tower from a point B on the same level as A , but twice as far from the base (X) of the tower.	
	(ii)	If <i>A</i> is due south of the tower and <i>B</i> is 130 metres due west of <i>A</i> , sketch a diagram to represent this situation.	
	(iii)	Find the height of the tower to the nearest metre.	
(c)	(i)	Show that the point $P(4t, 2t^2)$ lies on a parabola for all values of <i>t</i> , and state its focus and directrix.	4
	(ii)	Find the chord of contact to the parabola from the point $X(2, -2)$.	
	(iii)	Show that this chord passes through the focus of the parabola.	
(d)	Use th	the <i>t</i> -method (where $t = \tan \frac{\theta}{2}$) to solve $\sin \theta + 3\cos \theta = 2$ where	2

 $-180^{\circ} \le \theta \le 180^{\circ}$. Express your answer correct to the nearest minute.

Question 4. (15 Marks) (Start a new booklet.)

Marks

4

4

(a) Consider the polynomial
$$P(x) = x^4 + x^3 - 8x^2 - ax - 9$$
:

- (i) Find the value of the constant *a* if P(x) is divisible by $Q(x) = x^2 9$.
- (ii) Show that for this value of *a* the only real zeroes of P(x) are those of Q(x).
- (b) *P* and *Q* are points on the parabola with parametric equations x = 2at, $y = at^2$, **7** where t = p and t = q respectively.
 - (i) State the coordinates of *M*, the midpoint of *PQ*, in terms of *a*, *p* and *q*.
 - (ii) Show that if the chords *PO* and *QO*, where *O* is the origin, are perpendicular, then pq = -4.
 - (iii) Hence show that the locus of *M* is a parabola, and state its vertex and focal length.
 - (iv) Given that the equation of PQ is a(p+q)x = 2a(y+apq) find the point of intersection of the tangents at P and Q.
- (c) It is given that the angle between two planes is the angle between two lines both perpendicular at the same point to the line of intersection of the planes.

 $AB \perp EF$, $BC \perp EF$, and $\angle ABC$ is the angle between the planes.

Find the angle between two adjacent faces of a regular octahedron (in which all edges are of equal length). Give your answer correct to the nearest minute.

End of paper

SYDNEY BOYS HIGH SCHOOL Moore Park, surry hills

November 2005

Assessment Task #1

Mathematics Extension 1

Sample Solutions

Question	Marker
1	PRB
2	DMH
3	СК
4	PSP

$$(R) \xrightarrow{3}{-2} & \mathcal{B}(x, q) \qquad 6 = \frac{3x-2}{3-2} \Rightarrow 3x = 8 \therefore x = \frac{6}{3}$$

$$A(1, q) \xrightarrow{R(6, q)} \qquad f = \frac{3y-6}{3-2} \Rightarrow 3y = 17 \therefore y = \frac{17}{3}$$

$$\therefore \left| B \text{ in } \left(\frac{8}{3}, \frac{17}{3} \right) \right|$$

$$(111) \quad g = \frac{(x-1)^{2}}{2x+1}$$

$$j' = \frac{(x-1)^{2}}{(2x+1)^{2}} - (x-1)^{2} \cdot x$$

$$= \frac{2(x-1)\left[2x+1-(x-1)\right]}{(2x+1)^{2}}$$

$$= \frac{2(x-1)\left[2x+1-(x-1)\right]}{(2x+1)^{2}}$$

$$(d(x) - \frac{1}{x}) + \frac{1}{5}$$

$$(x - \frac{1}{5}) + \frac{1}{5}$$

Question 2

(a) Find the general solution of the equation

$$\sin \theta \cos \theta = \frac{1}{2}.$$

```
 \begin{array}{lll} \text{Solution:} & 2\sin\theta\cos\theta = 1, \\ \sin 2\theta = 1, \\ & 2\theta = n\pi + (-1)^n \frac{\pi}{2} \text{ where } n \in \mathbf{J}, \\ & = \frac{\pi}{2} + 2n\pi, \\ & \theta = n\pi + \frac{\pi}{4}. \end{array}
```

- (b) Given the polynomial $P(x) = x^3 + 2x^2 11x 12$:
 - (i) Use the factor theorem to determine the zeroes of the polynomial.

(ii) Express P(x) as a product of linear factors.

Solution:	P(x) = (x+1)(x+4)(x-3)
-----------	------------------------

(c) Prove the identity

 $\frac{\sin\theta}{1-\cos\theta}+\frac{1-\cos\theta}{\sin\theta}=2\mathrm{cosec}\,\theta$

Solution:	$LHS = \frac{\sin^2\theta + 1 - 2\cos\theta + \cos^2\theta}{1 + 1 + 2\cos^2\theta}$	
Solution.	$\frac{\sin \theta(1 - \cos \theta)}{\cos \theta}$	
	$=\frac{2(1-\cos\theta)}{\sin\theta(1-\cos\theta)}$	
	$\frac{\sin\theta(1-\cos\theta)}{2}$	
	$=\frac{\sin\theta}{\sin\theta}$,	
	$= 2 \cos \theta$,	
	= R.H.S.	

(d) Find the acute angle between the lines x-2y+1=0 and 3x+4y-3=0, correct to the nearest minute.

Solution: $m_1 = \frac{1}{2}, m_2 = -\frac{3}{4}.$
$\tan \alpha = \left \frac{\frac{1}{2} + \frac{3}{4}}{1 - \frac{1}{2} + \frac{2}{2}} \right ,$
$ \frac{1-\frac{1}{2}\times\frac{1}{4}}{ \frac{4+6}{4} }$
- 8-3 , - 2
∴ Acute angle is 63° 26′ (nearest minute).
∴ Acute angle is 63° 26′ (nearest minute).

(e) Fred wishes to purchase an annuity which will pay him \$28000 at the end of each year, for a period of 20 years. The ruling interest rate is $9\frac{1}{2}\%$ per annum compound. How much will Fred have to pay for the annuity?

Question 3

$$Sin\theta + 3\cos\theta = 2$$

$$\frac{2t}{1+t^{2}} + 3\left[\frac{1-t^{2}}{1+t^{2}}\right] = 2$$

$$2t + 3 - 3t^{2} = 2 + 2t^{2}$$

$$5t^{2} - 2t - 1 = 0$$

$$t = \frac{1 \pm 56}{5}$$

$$tan \frac{\theta}{2} = \frac{1 \pm 56}{5}$$

$$\frac{\theta}{2} = 34^{\circ}36', -16^{\circ}10'$$

$$\theta = 69^{\circ}12', -32^{\circ}20'$$

NB Clearly $\theta = 180^{\circ}$ is not a solution of the original equation

(d)

Question 4

(a) (i)
$$P(x) = x^4 + x^3 - 8x^2 - ax - 9$$

 $= (x^2 - 9)Q(x)$
 $\therefore P(3) = P(-3) = 0$ (Factor Theorem)
 $P(3) = 3^4 + 3^3 - 8(3)^2 - 3a - 9 = 0 \Rightarrow a = 9$
 $P(-3) = (-3)^4 + (-3)^3 - 8(-3)^2 + 3a - 9 = 0 \Rightarrow a = 9$
 $\therefore a = 9$

(ii)
$$P(x) = (x^2 - 9)(x^2 + Bx + 1)$$

 $P(1) = -24$
 $\therefore -24 = (-8)(2 + B) \Longrightarrow B = 1$
 $\therefore P(x) = (x^2 - 9)(x^2 + x + 1)$

For P(x) = 0 then either 1. $x^2 - 9 = 0 \Rightarrow x = \pm 3$ OR 2. $x^2 + x + 1 = 0 \Rightarrow \Delta = -3$

Clearly with $\Delta = -3$ then $x^2 + x + 1 = 0$ has no **REAL** solutions. So the only real **zeroes** of P(x) are those of $Q(x) = x^2 - 9$

(b)
$$P(2ap, ap^2), Q(2aq, aq^2)$$

(i) $M\left\{a(p+q), a\left(\frac{p^2+q^2}{2}\right)\right\}$
(ii) $OP + OQ$ is more form

(ii)
$$OP \perp OQ \Rightarrow m_{OP} \times m_{OQ} = -1$$

 $m_{OP} = \frac{ap^2}{2ap} = \frac{p}{2}$
 $\therefore m_{OQ} = \frac{q}{2}$
 $\therefore \frac{p}{2} \times \frac{q}{2} = -1 \Rightarrow pq = -4$

(iii)
$$x = a\left(p+q\right) \Rightarrow \frac{x}{a} = p+q$$
$$y = a\left(\frac{p^2+q^2}{2}\right) \Rightarrow \frac{2y}{a} = p^2+q^2$$
$$\left(\frac{x}{a}\right)^2 = \left(p+q\right)^2 = p^2+q^2+2pq = \frac{2y}{a}-8$$
$$\therefore x^2 = 2ya-8a^2 = 2a\left(y-4a\right)$$

Clearly this is the equation of a parabola with vertex (0,4a) with a focal length of $\frac{1}{2}|a|$

(iv) Clearly PQ is the chord of contact from the point $T(x_0, y_0)$ where $xx_0 = 2a(y + y_0)$ and $T(x_0, y_0)$ is the point of intersection of the tangents from P and Q.

$$\therefore a(p+q)x = 2a(y+apq) \Rightarrow \begin{cases} x_0 = a(p+q) \\ y_0 = apq \end{cases}$$

So *T* is the point $\{a(p+q), apq\}$ or $\{a(p+q), -4a\}$ (:: $pq = -4$)

(c)

The angle we require is $\theta = 2 \times \angle ACB$. Let the sides of the octahedron be 2a units. $\therefore DC = BC = a \Rightarrow DB = a\sqrt{2}$ (Pythagoras' Theorem) $\therefore AB = \sqrt{4a^2 - 2a^2} = a\sqrt{2}$ (Pythagoras' Theorem) $\therefore \tan(\angle ACB) = \frac{a\sqrt{2}}{a} = \sqrt{2}$ $\therefore \theta = 2 \tan^{-1} \sqrt{2} = 109^{\circ} 28'$